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The amplitude and frequency dependence of dynamical mode locking phenomena in the dc- and ac-driven
overdamped Frenkel-Kontorova model is studied by molecular-dynamics simulations. It was found that the
Shapiro steps and the critical depinning force exhibit very complex behavior. The form of amplitude depen-
dence is determined by the frequency of ac force, where the Bessel-type oscillations appear at the high
frequencies. With a changing of frequency, after initial increase, the critical depinning force saturates, while the
step width remains strongly frequency dependent even at the high frequencies. The dependence of frequency is
strongly influenced by the amplitude of ac force where, in the large amplitude regime, the oscillations of the
step width and the critical depinning force have been observed at the low frequencies. In the physical processes
that stay behind amplitude and frequency oscillations of the step size, an analogy between the influence of
amplitude and the period of the ac force is revealed. These oscillations are directly related to the existence and

the stability of the interference phenomena in the real systems.
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I. INTRODUCTION

Since the first observation of the Shapiro steps [1,2], the
phenomena of dynamical mode locking have been the sub-
ject of the extensive theoretical and experimental studies in
the dissipative dynamics of the many-body systems with
competing interactions, such as charge-density or spin-
density wave conductors [3-9], vortex lattices [10,11], and
Josephson-junction arrays biased by external -currents
[12-17]. Due to a great complexity of all these macroscopic
systems, the attention has always been focused on the simple
many-body models that could gain insight into the physics.
Among many-body models, the Frenkel-Kontorova (FK)
model [18,19] is one of the simplest but still complex enough
to capture the essence of many physical and biological phe-
nomena. The numerous theoretical and experimental results
in the above systems particularly stimulate the studies of
dissipative (overdamped) dynamics of the FK model.

The one-dimensional standard FK model represents a
chain of harmonically interacting particles subjected to an
external periodic (sinusoidal) substrate potential. It describes
different commensurate or incommensurate structures that
show very rich dynamical behavior when they are subjected
to an external driver. Contrary to the large number of studies
of the FK model driven by dc forces, a relatively small num-
ber of studies have been devoted to the FK model driven by
ac or periodic forces. Dynamics of the dc- and ac-driven FK
model is characterized by the appearance of the staircase
macroscopic response or the Shapiro steps in the curve for
average velocity as a function of the average external driving

force o(F). These phenomena are due to interference or dy-
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namical locking of the internal frequency (that comes from
the motion of particles over periodic substrate potential) with
the frequency of external ac force.

The overdamped dynamics of the both commensurate and
incommensurate structures of the one-dimensional standard
FK model submitted to dc and ac forces has been studied in
detail in the works of Floria er al. [20-22]. Using molecular
dynamic simulation, for the commensurate structure, they
obtained the staircase macroscopic response or the Shapiro
steps. The appearance of this quantized increase of the aver-
age velocity results from the generation of the coherent, time
localized and regularly distributed in-time disturbances (in-
stantons) [20,21,23]. Dynamical mode locking is only pos-
sible if the set of ground state is discrete; in the continuum

case, the response function o(F) is a continuous strictly in-

creasing function of F, and there is no mode locking. In the
incommensurate structure, the ac-driven dissipative dynam-
ics exhibits the dynamical Aubry transition [22], which rep-
resents a borderline between the two different dynamical re-
gimes. Dynamical hull function that describes a driven
structure becomes nonanalytical above the transition point,
and the result of this is the dynamical locking of the macro-
scopic response function at certain resonant values. The dy-
namical mode locking and the dynamical Aubry transition
for the commensurate and incommensurate structures, re-
spectively, appear to be one of the universal features of the
systems with the competition of time scales in the ac-driven
dynamic.

In the present paper, we will examine the influence of the
amplitude and frequency of the external ac force on the in-
terference phenomena in the commensurate structures of a
one-dimensional standard FK model. We are particularly in-
terested in how the step width and the critical depinning
force change with the amplitude and frequency of the ac
force. In spite of the extensive studies of the amplitude and
frequency dependence of the Shapiro steps in the charge den-
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sity wave systems and systems of Josephson junction arrays,
this has not been so much investigated in the FK model. We
obtained that the step width and the critical depinning force
exhibit very complex amplitude and frequency dependence,
where in the large amplitude regime, the frequency oscilla-
tions of the step width and critical depinning force have been
observed at the low frequencies. The results have shown that
in the physical processes that stay behind the amplitude and
frequency oscillations of the step size, the amplitude and
period of the ac force have a similar effect.

The paper is organized as follows. The model is intro-
duced in Sec. II. Simulation results are presented and ana-
lyzed in Sec. III, where the amplitude dependence is dis-
cussed in Sec. Il A, and the frequency variations in Sec.
III B. Finally, Sec. IV concludes the paper.

II. MODEL

We consider the dissipative (overdamped) dynamics of a
series of coupled harmonics oscillators u; subjected in a sinu-
soidal substrate (pinning) potential as follows:

K
(2m)?

where K is the pinning strength. The system is driven by dc
and ac forces as follows:

V(u) = [1-cos(2mu)], (1)

F(1)=F + F,, cos(2muyt). (2)

The equations of motions are
=gy + g = 2u; = V' () + F(t), (3)
where [ =—%, ,%’. Equation (3) has been integrated using

the fourth-order Runge-Kutta method with the periodic
boundary conditions for the commensurate structure with the
interparticle average distance (winding number) w={(u
—u;)) (w is rational for the commensurate and irrational for
the incommensurate structures). The time step used in the
simulations was 0.027, and a time interval of 1007 was used
as a relaxation time to allow the system to reach the steady
state. The force was varied with the step 107*. The response

function o(F), in particular, the step width and the critical
depinning force are analyzed for the commensurate structure
w=1.

When the system is driven by homogenous periodic force,
two frequency scales are present in the system: the frequency
v, of the external periodic (ac) force, and the characteristic
frequency of the motion over the periodic substrate potential

driven by the average force F. The competition between
these two frequency scales can result in the appearance of
synchronization phenomena.

If u,(¢) is the solution of Eq. (3), then the transformation

‘Ti,_j,m{uz(f)} ={up, (t —mlvy) + j}, (4)

produces another solution, where i, j, and m are integers. The
solution is called resonant, if there is a triplet of integers
such that it is invariant under the symmetry operation as
follows:
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O-i,j,m{ul(t)} = {ul(t)} (5)
The average velocity of resonant solution is given by [20]
iw+j
U= / Vy. (6)
m

When m=1, the resonant solutions and the steps are called
harmonic, while when m>1, the steps are called subhar-
monic (m=2 for fractional or half-integer steps).

We will consider only the behavior of the harmonic steps.
The behavior of the subharmonic steps cannot be studied in
the standard FK model since in the FK model with sinusoidal
substrate potential, there are no higher order subharmonic
steps. For the integer values of w, only harmonic steps exist
[24,25], while the fractional (half-integer) steps appear for
the rational noninteger values of w [20,21,23]. However,
these half-integer steps are so narrow compared to the har-
monic ones, that they are invisible on the regular plot of the

response function (F). The higher order subharmonic steps
can appear in the nonstandard FK model, such as one with an
asymmetric deformable substrate potential studied in Ref.
[26]. There, large fractional and higher order subharmonic
steps appear as a result of the deformation of substrate po-
tential.

II1. RESULTS

In the examination of the ac-driven systems, the main
interest is always focused on the existence and robustness
(structural stability) of the resonant solutions against the
changing of the system parameters.

In Fig. 1, the response functions o(F) for the commensu-
rate structure w=% are presented in two different regimes:
for different amplitudes of ac force, Fig. 1(a), and for three
different values of frequencies, Fig. 1(b).

Both the amplitude and frequency of the ac force strongly
influence the step width and the critical depinning force. The
phenomenon of dynamical mode locking is a result of the
competition of two forces: the pinning one V'(;), and the
driving force F(r). As we can clearly see in Fig. 1(a), the
steps can only exist in the certain amplitude region, other-
wise the system behaves either as a dc-driven dissipative
system, when F,.— 0, or as a system of driven free particles,
when F,.—%. On the curves in Fig. 1(b), we can see the
series of the harmonic steps that appear at the integer mul-
tiple of wv,. When frequency decreases, the step width be-
comes limited by the space between the steps, and with the
further decrease of frequency, it must tend to zero. Further,
we will present the detailed analysis of the amplitude and
frequency dependence of the step width and the critical de-
pinning force.

A. Amplitude dependence of the interference phenomena

In Fig. 2, the width AF of the first harmonic step v=0.1 as
a function of ac amplitude F,., in the three different fre-
quency regimes is presented. The figures are obtained by

extracting AF from the series of response functions &(F)
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FIG. 1. Average velocity as a function of the average driving
force for w=%, K=4, in different ac amplitude and frequency re-

gimes: (a) for v5=0.2, and F,.=0, 0.05, 0.2, 0.5, and 10, and (b) for
F,.=0.2, and 7,=0.05, 0.2, 0.5.

made for different amplitudes, and the three different values
of frequency.

As we can see, in all frequency regimes, the step width
oscillates with ac amplitude, where only at the high frequen-
cies, the oscillations have the Bessel-type form. At the high
frequency, in Fig. 2(a), the maximum step width (the first
maximum at the curve AF versus F,.) is the highest one
compared to the cases for lower frequencies, and the enve-
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FIG. 2. The width of the first harmonic step v=ww as a func-
tion of the ac amplitude for w:%, K=4, and different values of the
ac frequency: (a) v,=0.5, (b) 1y=0.2, and (c) 1,=0.05.
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FIG. 3. The widths of the first three harmonic steps v=0.1, 0.2,

and 0.3 as a functions of the ac amplitude for w=%, K=4, and v,
=0.2.

lope of the oscillations decreases with the increase of ac
amplitude. With the decrease of ac frequency, in Fig. 2(b),
the maximum step width is reduced, while the period of os-
cillations strongly decreases, and the oscillations start slowly
to change from the Bessel-type form. At the very low ac
frequency, in Fig. 2(c), the maximum step width and the
period of oscillations are very low. The first maximum is not
so pronounced, and the oscillations have completely lost the
Bessel-type form.

Variations of the step width with ac amplitude for the first
three harmonics (0=:-wv,, wher i:},%,%, and v,=0.2)
are shown in Fig. 3. The maximum step width is the highest
for the first harmonic 0=0.1, and it decreases with the har-
monic order, while the initial increase becomes more
gradual. At the high ac amplitudes, the oscillations for all
harmonics become equal, and the phase difference between
the curves for even and odd harmonics is 180°.

Application of the ac force on the dc-driven system
strongly influences the critical depinning force F.. In Fig. 4,
the critical depinning force as a function of ac amplitude, in

FIG. 4. The critical depinning force as a function of the ac
1

amplitude, for =5, K=4, and different values of the ac frequency:
(a) 19=0.5, (b) vy=0.2, and (c) vy=0.05. The dashed curves repre-
sent the first harmonic step widths AF.
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the three different frequency regimes is presented.

As we can see from Fig. 4 and also from Fig. 1(a), when
F,.=0, F. reaches the threshold value for the dc-driven sys-
tem: F.,=0.2544. With the increase of ac amplitude, the
critical force shows oscillatory behavior in all three fre-
quency regimes. The maxima and the envelope of the oscil-
lations are the highest in Fig. 4(a), for vy=0.5. As the fre-
quency decreases for v;=0.2, in Fig. 4(b), the maxima and
the envelope of the oscillations are reduced, while the period
is decreasing. At the low frequency v,=0.05, in Fig. 4(c), the
maxima and the period of the oscillations are drastically sup-
pressed. In all three cases, we have also shown AF of the
first harmonic by a dashed curve. The period of oscillations
for AF and F, are the same, and according to the results in
Figs. 3 and 4, the minima of the F.. curve will correspond to
the maxima of the AF curve for odd harmonics, and to the
minima of the AF curve for even harmonics.

The oscillatory behavior of the step size is determined by
the ac force. The ac force induces additional polarization
energy into the system that is different from zero (less than
zero) only when the velocity (internal frequency) reaches the
resonant values, in the same time, the average pinning force
will also be different from zero. At the resonance, the system
will get locked since the average pinning energy of the
locked state (on the step) is lower than in the unlocked state,

and as F increases, it will stay locked until the pinning force

can cancel the changes of F. The size of a step oscillates with
ac amplitude due to back and forward displacement of par-
ticles induced by the ac force, where the ac amplitude deter-
mines how much this motion is retarded [4,6]. For the values
of the ac amplitude that correspond to the first maximum,
particles will spend most of the time pinned, and then hop to
the next well, while for the values at the second maximum,
particles will jump one site back and two forward. As the ac
amplitude increases, the particles will hop between the wells
that are more and more distant while staying less and less
time pinned, and consequently, the step width will decrease.
Our results show that these Bessel-type oscillations in Figs.
2(a) and 2(b), will be present only at the large frequencies,
when the period of the ac force is small. With the decrease of
frequency in Fig. 2(c), due to a longer period, even for the
same value of ac amplitude, the step size will be smaller
since the particles can hop between more distant wells. Dis-
placement between more distant sites will appear only when
the ac amplitude is high enough or the period is long enough.

The variations of the step width and the critical depinning
force with ac amplitude have been extensively studied in the
charge-density wave systems [4,6], vortex lattices, and the
systems of Josephson junction arrays [12-17,27,28]. In the
charge-density wave systems, the analytical results in the
form of Bessel function are obtained in the high frequency
limit, in the single coordinate model [6,8]. These analytical
results have also been in good agreement with experimental
studies [3,4,6] (some early experiments did not give evi-
dence of such oscillations [29,30]; according to them, the
step width first increases and then decreases with the ac am-
plitude). In the systems of Josephson junction arrays, in
Refs. [15-17,27], Bessel-type oscillations are obtained by
applying a single junction model. The amplitude dependence
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FIG. 5. The width of the first harmonic step v=w, as a func-
tion of the ac frequency, for w=%, K=4, and different values of the
ac amplitude: (a) F,.=0.5, (b) F,.=0.2, and (c) F,.=0.05.

in our work was analyzed in all frequency regimes, and it
was found to be more complex than the commonly obtained
Bessel-type oscillations in single coordinate or single junc-
tion models, where the influence of frequency has not been
studied. In Ref. [31], the influence of frequency on amplitude
dependence of steps has been studied in the two-dimensional
Josephson junction arrays. Contrary to the single junction
model, very complex amplitude dependence has been ob-
tained, with the anomalous oscillations of the step width, and
the very sharp roll-off at the high frequencies. In the standard
FK model, as our results show, there are no anomalous os-
cillations. They could probably appear in the FK model stud-
ied in Ref. [26], where due to deformations of potential,
particles have different energy, and the system does not be-
have uniformly (due to deformation, the system may split in
two or more subsystems that behave differently; while one is
still locked, the other may be already moving and this may
cause more complex and anomalous dependence).

B. Frequency dependence of the interference phenomena

The width of the first harmonic step as a function of the ac
frequency v, in the three different amplitude regimes is pre-
sented in Fig. 5.

In all amplitude regimes, as the frequency increases, the
step width first gradually increases, reaching its maximum,
and then slowly decreases towards zero at the high frequen-
cies. However, in Fig. 5(a), at F,,.=0.5, we have observed a
very interesting phenomenon. At the very low frequency v,
<0.16 the step width oscillates with the ac frequency, where
the maxima and the envelope of the oscillations gradually
increase as the frequency increases. These oscillations disap-
pear with a further increase of frequency, where AF in-
creases, and then slowly decreases to zero at the very high
frequencies. As the ac amplitude decreases, for F,.=0.2 in
Fig. 5(b), and for F,.=0.05 in Fig. 5(c), this low frequency
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oscillatory behavior disappears. The initial increase becomes
less gradual, while the maximum of the AF curve decreases.

The widths of the first three harmonic steps (ﬁiszvo, i
=1,2,3) as a function of the ac frequency are shown in Fig.
6.

We can see that the maximum step width is the highest
one for the first harmonic, and it considerably decreases with
the increase of the harmonic order. At the high frequencies,
the higher harmonic steps are completely suppressed.

The critical depinning force F, as a function of ac fre-
quency, in the three different amplitude regimes is presented
in Fig. 7.

In all three amplitude regimes at the low frequencies, F,
first increases as the frequency increases. With the further
increase of frequency, it saturates to the frequency indepen-
dent threshold value for the dc-driven system F,, (repre-
sented by the dotted curve). In the high amplitude regime in
Fig. 7(a), we again observed the oscillatory behavior at very
low frequencies (on the same figure the width of the first

FIG. 7. The critical depinning force as a function of the ac
frequency for w:%, K=4, and different values of the ac amplitude:
(a) F,.=0.5, (b) F,.=0.2, and (c) F,.=0.05. The dashed curve rep-
resents the first harmonic step width AF. The dotted curve is the
threshold value for the dc-driven system: F.(=0.2544.
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FIG. 8. The widths of the first two harmonic steps AF (solid
curves) and the critical depinning force F, (dashed curve) as a func-
tion of the ac frequency, in the large amplitude regime, F,.> F .,
for w=%, K=4, and F,.=0.5.

harmonic step from Fig. 5(a) is shown by a dashed curve).
With the decrease of the ac amplitude in Fig. 7(b), the oscil-
latory behavior disappears. When v,— 0, for F,.=0.2 in Fig.
7(b), the critical depinning force goes towards the value
F.,—F,=0.0544. As the frequency increases, F,. saturates
faster to the dc threshold value compared to the case in Fig.
7(a). At the very low amplitude in Fig. 7(c), in the zero
frequency limit the critical depinning force reaches the value
F.=0.2044, while as the frequency increases, it saturates
very quickly to F,. The oscillatory behavior at the low fre-
quencies has been observed only when F,.>F,_.. The step
widths of the first (i=1) and second harmonics (i=2), and
the critical depinning force as a function of the ac frequency
are presented in Fig. 8.

As in the case of the step variation with the ac amplitude
in Sec. Il A, we can clearly see that the maxima of step
width for odd harmonics corresponds to the minima of the
critical depinning force. We have performed the simulations
also for F,.=F,.y, and obtained that F. goes to zero when
vo— 0. On the other side, if F,. increases, the oscillatory
behavior will spread more and more towards the higher fre-
quencies, and for the very large ac amplitudes (F,.>F,),
the oscillatory behavior will dominate.

These low frequency oscillations are even better revealed
in Fig. 9, where the step width is plotted versus period (VLO) in

the high and low amplitude regimes.

5 1/V010 15

FIG. 9. The widths of the first harmonic step AF as a function of
(1/vy), for wzé and K=4, in the large [F,.=0.5, F,.>F,, (solid
curve)] and small [F,.=0.2, F,.<F, (dashed curve)] amplitude
regimes.
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As we can see, there is a great difference between two
amplitude regimes, where for F,.>F . the form of the curve
is very similar to the Bessel oscillations.

These low frequency oscillations that we have observed
when F,.>F,, are the result of the simultaneous competi-
tion and contributions of the dc and ac component of F(f) to
the pinning energy. When F,.>F,,, at the low frequencies
the ac contribution, which is responsible for the appearance
of these oscillations, will dominate in the pinning energy. As
in the case of amplitude dependence, Sec. III A, the oscilla-
tions appear due to the backward and forward motion of
particles induced by ac force. At the low frequencies, due to
a very long period, the particles will move between the sites
that are further apart, and consequently spend less time
pinned, which will result in a smaller step size. As the fre-
quency increases, the displacement will be between closer
and closer sites, and at the value of frequency that corre-
sponds to the maximum step width, the particles will spend
most of the time pinned, and then they will hop to the next
site. The oscillations will exist until the frequency reaches
the value for which the dc contribution will cancel the ac
contribution (Shapiro steps could be also produced by chang-
ing v, and keeping F constant).

The interference phenomena have been the subject of
many theoretical and experimental studies, however, con-
trary to the very extensive studies of amplitude dependence,
a relatively small number of studies have been devoted to the
dependence of frequency. The frequency dependence of the
Shapiro steps, and the physics behind interference phenom-
ena are still a matter of debate. In the CDW systems, two
competing and fundamentally different theories have been
proposed, and interestingly, they have both been equally sup-
ported by different experiments [4,32]. According to the clas-
sical approach [32,33], which considers a deformable charge
elastic medium with the internal degrees of freedom, the step
width and the critical depinning force should be strongly
frequency dependent, and after an initial increase, decrease
to zero at the high frequencies. In contrast, in the other the-
oretical approach based on the tunneling theory [4—6], where
the CDW conductor is treated as a macroscopic quantum
system, tunneling of the CDW between the pinned states
results in a frequency independent mode locking at the high
frequencies. In Refs. [4,8], using a simple single coordinate
model motivated by the tunneling theory, it was proved ana-
lytically that the maximum step width is proportional to the
magnitude of the fundamental component of the effective
pinning force that is independent of frequency at the high
frequencies. These results are in good agreement with some
experiments, and according to Ref. [4], the reduction of de-
grees of freedom during mode locking might be the cause of
frequency independence.

In the systems of Josephson-junction arrays, according to
Refs. [15-17,27], the widths of harmonic steps follow the
behavior of the single junction model. After a gradual in-
crease at the high frequencies, they saturate to the frequency
independent value; meanwhile the widths of subharmonic
and fractional steps decrease towards zero due to a departure
from single junction behavior. On the other side, in some
other theoretical and experimental works [31,34,35], the am-
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FIG. 10. The widths of the first harmonic step AF and the criti-
cal depinning force as a function of () in the high amplitude
regime (F,.>F,y) for o=1, K=4, and F,.=1.2.

plitude and frequency dependence significantly different
from the single junction case, and the disappearance of steps
at the high frequencies have been observed (single junction
models do not work well if the system is disordered [35]).

In our work, we have considered an overdamped classical
many-body model, and as in other systems with many de-
grees of freedom the steps will remain strongly frequency
dependent and disappear at the high frequencies. Since we
have obtained these low frequency oscillations in one system
with many degrees of freedom, in order to examine whether
these oscillations exist in the single coordinate models, we
will then analyze the commensurate structure with the wind-
ing number w=1, for which the FK model reduces to the
single particle model [20]. In Fig. 10, the frequency oscilla-
tions of the step width and the critical depinning force for the
commensurate structure w=1 in the high amplitude regime
are presented.

According to these results we can conclude that the fre-
quency oscillations of the Shapiro steps will appear when
F,.>F_. in any commensurate structure, and irrespectively
of the number of the degrees of freedom in the system.

Besides the step width and the critical depinning force,
the ratio of the second and first harmonic step widths is often
examined in the realistic systems. According to the single
coordinate model [4], this ratio is nearly constant, indicating
again the frequency independence of interference phenom-
ena. We have also examined the frequency dependence of the
ratio of the second and first harmonic step widths. In Fig. 11,
the results obtained for w:% in the two amplitude regimes

3 Fac>F00
T Fac<F00
é 2
LLN
<
1 I i
oV N T

0.1 02, 03 0.4

FIG. 11. Ratio of the second and first harmonic step widths as a
function of the ac frequency for K=4, w=1, and F,=12 (F,
>F,, solid curve), and F,.=0.5 (F,.<F,, dashed curve).
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F,.<F, and F,.>F, are presented (similar results are also
obtained for w=1).

When F,.<F,, the ratio i—g decreases with the increas-
ing of frequency. However, when F,.>Fy, due to the ap-
pearance of the oscillatory behavior at the low frequencies,
very sharp peaks will appear at the points where AF; goes to
zero (the heights of the peaks are more than 100, and the
vertical scale on the plot is from O to 4, in order to make both
curves visible). At the higher frequencies these singularities
will disappear, and the ratio will gradually decrease.

IV. CONCLUSION

In this paper we presented a detailed study of the ampli-
tude and frequency dependence of the dynamical mode-
locking phenomena in an overdamped dc- and ac-driven FK
model. The presented results have shown that the Shapiro
steps (resonant solutions) have a very complex amplitude
and, in particular, frequency dependence, where the fre-
quency oscillations of the step width and the critical depin-
ning force have been observed in the high amplitude regime.
When the amplitude of the ac force is changing, the step
width and the critical depinning force exhibit oscillatory be-
havior, where the type of oscillations is determined by the ac
frequency, and commonly observed the Bessel-type form ap-
pears only at the high frequencies. The frequency depen-
dence of the step width is strongly determined by the ac
amplitude, where at the point F,.=Fy, the behavior of the
system completely changes. While when F,.<F, the steps
and the critical depinning force will gradually increase with
frequency, where the step width will remain strongly fre-
quency dependent and disappear at the high frequency for
F,.>F,,, the oscillatory behavior will appear at the low fre-
quencies. Presenting the step width as a function of VLO, the
analogy between the ac amplitude and the period is reveled.
Our results have shown that the increase of the period will
have a similar effect on the displacement of particles, and
consequently on the step size, as the increase of the ac am-
plitude. Considering two commensurate structures (w:% and
1), but still working in the same model, we could examine
how the degrees of freedom influence the behavior of the
system. These low frequency oscillations have been observed
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in both commensurate structures, irrespectively of the num-
ber of degrees of freedom.

We must note that we did not want to favor or criticize
any of these different models that are present in the theoret-
ical description of interference phenomena in the charge-
density wave systems and the systems of Josephson-junction
arrays, and they all can account well in different situations.
However, the fact that one and the same physical phenomena
are described by the two fundamentally opposite theoretical
approaches (the classical one and the one based on the tun-
neling theory) means that a detailed understanding is still
lacking. In spite of the great success of the single coordinate
and single junction models, the description of realistic sys-
tems cannot always be so simple, and we believe that our
results could bring new insight into the physics of interfer-
ence phenomena in a realistic system, particularly into still
existing debate among different models.

Although the above results have been obtained in one
very specific model such as Frenkel-Kontorova, they could
be of great importance for all real systems with overdamped
motion, and driven by periodic forces such as charge- or
spin-density-wave systems, vortex lattices, and the systems
of Josephson junction arrays. The phenomena of CDW in
solids, which account for the anomalous transport properties,
and the studies of Josephson junction arrays, which are mo-
tivated by technical applications of the Josephson effects,
synchronization phenomena, investigations of flux-flow de-
vices are closely connected to the dissipative dynamics of the
FK model [3,20]. In the applications of interference effects
(synchronization phenomena), the attention is always fo-
cused on their stability, and thereafter, on the conditions that
produced maximum step size. The results that we have ob-
tained, especially the frequency oscillations of the steps, are
directly related to the existence and stability of the resonant
solutions, and from that point, particularly interesting, not
only for the experiments on interference phenomena, but for
all these situations where periodic forces and dynamical
mode locking are involved.
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